Sirindhorn International Institute of Technology
 Thammasat University at Rangsit

School of Information, Computer and Communication Technology

TCS 455: Problem Set 6

Semester/Year: 2/2009
Course Title: Mobile Communications
Instructor: Dr. Prapun Suksompong (prapun@siit.tu.ac.th)
Course Web Site: http://www.siit.tu.ac.th/prapun/ecs455/

Due date: 12PM, Feb 8, 2010 (not due for those in TCS455)

1. Recall that the baseband OFDM modulated signal can be expressed as

$$
s(t)=\sum_{k=0}^{N-1} S_{k} \frac{1}{\sqrt{N}} 1_{\left[0, T_{s}\right]}(t) \exp \left(j \frac{2 \pi k t}{T_{s}}\right)
$$

where $S_{0}, S_{1}, \ldots, S_{N-1}$ are the (potentially complex-valued) messages.
Let $T_{s}=1[\mathrm{~ms}], N=8$, and

$$
\left(S_{0}, S_{1}, \ldots, S_{N-1}\right)=(1-j, 1+j, 1,1-j,-1-j, 1,1-j,-1+j)
$$

a. Use MATLAB to plot the following waveforms as accurately as you can.
i. $\quad a(t)=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \operatorname{Re}\left\{S_{k}\right\} \cos \left(\frac{2 \pi k t}{T_{s}}\right)$
ii. $\quad b(t)=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \operatorname{Im}\left\{S_{k}\right\} \sin \left(\frac{2 \pi k t}{T_{s}}\right)$
iii. $\operatorname{Re}\{s(t)\}$
b. What is the relationship between $a(t), b(t)$, and $\operatorname{Re}\{s(t)\}$?
2. Consider the discrete-time complex FIR channel model

$$
y[n]=\left\{h^{*} x\right\}[n]+w[n]=\sum_{m=0}^{2} h[m] x[n-m]+w[n]
$$

where $w[n]$ is zero-mean additive Gaussian noise.

In this question, assume that $h[n]$ has unit energy and that $H(z)$ has two zeros at $z_{1}=\rho e^{j \frac{2 \pi}{3}}$ and $z_{2}=\frac{1}{\rho}$ where $\rho<1$.
a. Plot $\left|H\left(e^{j \omega}\right)\right|=|H(z)|_{z=e^{j \omega}} \mid$ in the range $\omega=0: \frac{2 \pi}{80}: 2 \pi$ for $\rho=0.5$ and 0.99
b. For OFDM system with block size $N=8$, find the corresponding channel gains $H_{k}=\left.H(z)\right|_{z=e^{j \frac{2 \pi}{N}}}, k=0,1,2, \ldots, N-1$ for $\rho=0.5$ and 0.99 . In particular, complete the following table.

Ch \# k	$\rho=0.5$		$\rho=0.99$	
	$H\left(e^{j \frac{2 \pi}{N} k}\right)$	$\left\lvert\, H\left(e^{j \frac{2 \pi}{N} k}\right)\right.$	$H\left(e^{j \frac{2 \pi}{N} k}\right)$	$\left\|H\left(e^{j \frac{2 \pi}{N} k}\right)\right\|$
1				
2				
3				
4				
5				
6				
7				

3. OFDM simulation: Write a MATLAB code to perform the following operations
a. Generate 10,000 OFDM blocks, each is an 8 dimensional QPSK vector. Each element of the vector is independently and randomly chosen from the constellation set $M=\{1+j, 1-j,-1+j,-1-j\}$.
b. Perform the IFFT to each vector.
c. Add the cyclic prefix to each block and transmit over the FIR channel defined in the previous question. Assume $w[n] \equiv 0$. Consider two cases: $\rho=0.5$ and 0.99 .
d. At the receiver, remove the cyclic prefix and perform the FFT to get R_{k}.
e. Detect the transmitted symbols at each channel. Use the ML (maximum likelihood) detector. Record the symbol error rates (SER) for each channel. (All of them should be 0 in this question.)
Hint: When there is no noise, you have $R_{k}=H_{k} S_{k}$. Therefore, $S_{k}=\frac{R_{k}}{H_{k}}$.

When there is some zero-mean Gaussian noise, $R_{k}=H_{k} S_{k}+W_{k}$ where W_{k} is the noise (in the frequency domain). Therefore,

$$
\frac{R_{k}}{H_{k}}=S_{k}+\frac{W_{k}}{H_{k}}
$$

Because the noise is Gaussian and zero-mean, the noise will most likely not take $\frac{R_{k}}{H_{k}}$ too far from S_{k}. Therefore, the ML detector gives

$$
\hat{S}_{k}=\underset{s \in M}{\arg \min }\left\{\left\|R_{k}-s H_{k}\right\|\right\}=\underset{s \in M}{\arg \min }\left\{\left\|\frac{R_{k}}{H_{k}}-s\right\|\right\},
$$

i.e. it detects S_{k} as the closest message s in the constellation to $\frac{R_{k}}{H_{k}}$. Of course, the noise can be large and shift $\frac{R_{k}}{H_{k}}$ too far from the original S_{k}. Therefore, \hat{S}_{k} may be different from S_{k}. This is when symbol error occurs.
4. Repeat Question 3. However, in this question, the channel noise is non-zero. $w[n]$ is now i.i.d. complex-valued Gaussian noise. Its real and imaginary parts are i.i.d. zero-mean Gaussian with variance $N_{0} / 2$ where

$$
N_{0}=\frac{2}{3 \mathrm{SNR}_{\mathrm{norm}}} .
$$

Assume $\mathrm{SNR}_{\text {norm }}$ is 2 dB .
a. Complete the following table.

Ch \# k	$\rho=0.5$	$\rho=0.99$
0		
1		
2		
3		
4		
5		
6		
7		

b. Explain your SER results using the table in Question 2.

